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a b s t r a c t

Sequential sampling models are widely used in modeling the empirical data obtained from different
decision making experiments. Since 1960s, several instantiations of these models have been proposed.
A common assumption among these models is that the subject accumulates noisy information during the
time course of a decision. The decision is made when the accumulated information favoring one of the
responses reaches a decision boundary. Different models, however, make different assumptions about
the information accumulation process and the implementation of the decision boundaries. Comparison
among these models has proven to be challenging. In this paper we investigate the relationship between
several of these models using a theoretical framework called the inverse first passage time problem.
This framework has been used in the literature of applied probability theory in investigating the range
of the first passage time distributions that can be produced by a stochastic process. In this paper, we
use this framework to prove that any Wiener process model with two time-constant boundaries can be
mimicked by an independent race model with time-varying boundaries. We also examine the numerical
computation of themimicking boundaries.We show that themimicking boundaries of the racemodel are
not symmetric. We then propose an equivalent race model in which the boundaries are symmetric and
time-constant but the drift coefficients are time-varying.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In the last few decades, a large amount of research has in-
vestigated the mechanisms underlying simple perceptual decision
making. The basic idea is to examine how the subjects’ reaction
time and accuracy change as a function of the properties of noisy
stimuli. Describing the pattern of this empirical data computation-
ally has proven to be a challenging task. A ‘‘good’’ computational
model should be able to describe the relation between the physi-
cal properties of the stimulus (e.g., the salience and discriminabil-
ity) and the shape of the reaction time distributions, the accuracy,
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the relative speed of the correct and incorrect responses and the
effect of emphasizing speed or accuracy in the instructions. Neu-
rophysiological data obtained from the activity of populations of
neurons during perceptual decision making experiments impose
more restrictions on the computational models. One class of mod-
els which has been successful in accounting for these patterns of
data is sequential sampling models. In this modeling framework, it
is assumed that after the presentation of the stimulus, the subject
starts accumulating noisy information favoring each alternative re-
sponse in the task. The subject responds in a trial when the accu-
mulated information favoring one of the alternatives reaches a spe-
cific amount called the decision threshold.

Several instantiations of this framework have been proposed
by researchers including the full diffusion model (Ratcliff, 1978),
Ornstein–Uhlenbeck (OU) model (Busemeyer & Townsend, 1993),
leaky competing accumulator (LCA) model (Usher & McClelland,
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2001), linear ballistic accumulator (LBA) model (Brown & Heath-
cote, 2008), race models (Eidels, Houpt, Altieri, Pei, & Townsend,
2011; Smith&Vickers, 1988; Townsend&Ashby, 1983) and accrual
halting models (Townsend, Houpt, & Silbert, 2012). These mod-
els differ in their assumptions about the information accumulation
process and the way that the decision is made based on this infor-
mation.

Comparison among these models poses another challenge to
the computational modeling of perceptual decisionmaking. Model
comparison is particularly challenging because in many situations
these models make similar predictions. Two general approaches
have been employed by researchers to compare these models. In
the first approach, the models are fitted to the empirical data and
are compared based on some statistical measures of goodness of
fit, for example, chi-square, sum of squared errors, BIC and AIC
(Ratcliff & Smith, 2004; Ratcliff & Tuerlinckx, 2002; Ratcliff, Van
Zandt, & McKoon, 1999; Tsetsos, Gao, McClelland, & Usher, 2012;
Van Zandt, Colonius, & Proctor, 2000). Besides quantitative fit,
the qualitative predictions of each model are compared to the
patterns in the data. For example, a common finding in reaction
time experiments is that the mean reaction times for the correct
and incorrect responses are not the same. Any model that cannot
predict this pattern is not likely to be a good model of these
experimental data.

The second approach is to examine the theoretical relation-
ship between these models without considering the data (Dzha-
farov, 1993; Jones & Dzhafarov, 2014; Pike, 1968; Smith, 2010;
Townsend, 1976; Townsend & Ashby, 1983; Zhang, Lee, Vandeker-
ckhove,Maris, &Wagenmakers, 2014). Of particular interest in this
vein of research is the problemofmodelmimicry. Twomodels of the
reaction timemimic each other if they produce the exact same dis-
tributions of reaction time. The research in this area is less preva-
lent. One main reason is that, besides a few exceptions, the ana-
lytic form of the distributions of reaction time predicted by these
models is not known. Therefore, it is hard to determine the range
of patterns that can be produced by each model. This is especially
the case when the accumulation process is modeled as a stochastic
process. Recently, Jones and Dzhafarov (2014) have theoretically
investigated the range of reaction time distributions that can be
produced by several classes of models. In the models considered
in their paper, neither the accumulation process nor the decision
thresholds are stochastic processes. Instead, the models consist of
random variables and deterministic time-varying functions.1 More
recently, Zhang et al. (2014) proposed a new method for investi-
gating the mimicry between sequential sampling models in which
the accumulation process is a stochastic process and the decision
thresholds are time-varying functions. In their method, the prob-
lem of mimicking a model by another model is translated into an-
other problem called the inverse first passage time problem. Amodel
can mimic another one if the corresponding inverse first passage
time problem is solvable. The authors considered the mimicry be-
tween a diffusion model and an accumulator model. They showed
how one can numerically compute two time-varying boundaries
for a diffusion model such that it mimics an accumulator model
with symmetric boundaries. Although their simulation results sug-
gest that an accumulator model can always be mimicked by a dif-
fusion model, no theoretical analysis is provided in the paper.

In this paper, we take the same approach for investigating
mimicry among sequential sampling models. Specifically, we con-
sider the following question: can a Wiener process with constant

1 Even in the Wiener processes considered in Theorems 11 and 12 in Jones and
Dzhafarov (2014) the signal to noise ratio should be so large that the information
accumulation reduces to a deterministic growth rate (see Smith, Ratcliff, &McKoon,
2014).
boundaries bemimicked by an independent racemodel? Themain
goal of this paper is to investigate this question theoretically using
the existing theorems in the stochastic processes literature, partic-
ularly the inverse first passage time problems. To this end, in the
following two sections we introduce the stochastic processes con-
sidered in this paper and give a formal definition of the inverse first
passage time problem. Then, in Section 4 we review some of the
existing theorems regarding the inverse first passage time problem
thatwewill use in deriving our results. In Section 5, we present our
theoretical results on mimicry between theWiener process model
and the independent race model and then in Section 6 the numer-
ical results are reported. In Section 7, we compare our results with
some of the theoretical results in Jones and Dzhafarov (2014). Fi-
nally, Section 9 is devoted to the problem of mimicry of a Wiener
process model by an OU process model.

2. Wiener process and independent race models of decision
making

As explained in the Introduction, in a sequential sampling
model it is assumed that the information favoring each alternative
is accumulated and the subject responds in a trial whenever the
accumulated information reaches a decision boundary. In aWiener
processmodel (also known as theWiener diffusionmodel) of a task
with two alternatives, the accumulated information is modeled
as a stochastic process called the Wiener process. Formally, a
Wiener process X(t) is characterized by the following stochastic
differential equation (SDE):

dX(t) = µ · dt + σ · dB(t). (1)

In this equation, the parametersµ andσ are called the drift and the
diffusion coefficients, respectively. It can be shown that E [X(t)] =

µ · t and Var [X(t)] = σ 2
· t and so these parameters determine the

mean and the variance of the process at each time (see for example
Smith, 2000). The process dB specifies the increments of a zero-
mean Gaussian process. In this paper, we always assume that the
initial value of the process is zero (X(0) = 0).

In this model, it is assumed that the response 1 (response 2)
is chosen in a trial if the process exceeds the decision boundary
b1 (b2) before it hits the other decision boundary b2 (b1). In the
literature of the stochastic processes, the first time that the process
hits a decision boundary is called the first passage time (FPT). In the
sequential sampling models, the FPT of the process is considered
as the subject’s decision time. Formally, the FPTs for the decision
boundaries b1 and b2 are defined as follows:

T1 = inf {t > 0|X(t) ≥ b1 AND X(τ ) > b2, for all τ < t}
T2 = inf {t > 0|X(t) ≤ b2 AND X(τ ) < b1, for all τ < t} .

(2)

Because of the noise term dB in Eq. (1), the FPTs Ti are random
variables. The subject’s reaction time in each trial is a realization
of either of these two random variables. We assume that when the
accumulated information of one accumulator reaches its threshold
first in a trial, the FPT in the other accumulator is∞. To this endwe
adopt the convention that the infimum of an empty set is infinity.

We denote the probability density function (p.d.f.) of Ti by
gi(t) (that is, gi(t) =

d
dt Pr(Ti ≤ t)). It is important to note

that


∞

0 gi(t)dt = Pi, where Pi is the probability of choosing the
response i. This probability is not necessarily 1 and so gi(t) is a
defective probability density function. A sample path of a Wiener
process along with two decision boundaries is shown in the upper
panel of Fig. 1.

Another sequential samplingmodel that we consider in this pa-
per is the independent race model. In an independent race model
there is a separate information accumulator for each alternative re-
sponse. Each accumulator ismodeled as a stochastic process. These
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(a) Wiener process.

(b) Independent race model.

Fig. 1. (a) A sample path of a Wiener process. (b) A sample path of an independent
race model. The thin black lines indicate the amount of accumulated information
and the thick lines indicate the decision thresholds. In panel (a), since the
accumulated information has reached b1 before b2 , response 1 will be chosen and
the decision time is about 0.85 s. In panel (b), since X1 has reached its boundary
sooner, the response corresponding to the first accumulator will be chosen and the
decision time is about 0.95 s.

processes are assumed to be independent of each other and each
of them has its own decision boundary. In each trial, the response
corresponding to the process that first reaches its boundary is cho-
sen and the decision time is equal to the FPT of that process. The
lower panel of Fig. 1 shows a sample path of an independent race
model. In this figure, it is assumed that there are two possible re-
sponses and so there are two processes X1 and X2 corresponding
to them. Since the process X1 has reached its boundary sooner, its
corresponding response is chosen.

The decision boundaries in the models in Fig. 1 are constant.
However, we can extend the definition of the FPT to the case of
time-varying boundaries. Let bi(t), i = 1, 2 denote the time-
varying decision boundary for the ith accumulator. The FPT of the
process Xi through the boundary bi(t) (ignoring the other accumu-
lator) is defined as follows:

Ti = inf {t > 0|Xi(t) ≥ bi(t)} . (3)

We denote the p.d.f. of Ti by fi(t). It is important to note that,
for example, T1 is the FPT of X1 through b1 without considering the
process X2 (T2 is defined similarly). However, in an independent
race model we are interested in the first time that, for example,
the process X1 reaches its boundary before the process X2 reaches
its boundary. Let Ti, i = 1, 2 denote the time at which the pro-
cess i reaches its boundary before the other process does so. Since
the process that first reaches its boundary determines the response
and the decision time, Ti is the decision time for response i. For-
mally, we can define the random variablesTi, i = 1, 2 as follows:T1 = inf {t > 0|X1(t) ≥ b1(t) AND X2(τ )

< b2(τ ) for all τ < t}T2 = inf {t > 0|X2(t) ≥ b2(t) AND X1(τ )

< b1(τ ) for all τ < t} .

(4)

Let hi(t) denote the p.d.f. ofTi. It is easy to show that:

h1(t) = f1(t) · S2(t)
h2(t) = f2(t) · S1(t)

(5)

where Si(t) = 1−
 t
0 fi(τ )dτ =


∞

t fi(τ )dτ is the survivor function
of the random variable Ti. It is worth noting that


∞

0 fi(t)dt =

12 but


∞

0 hi(t)dt = Pi where Pi is the probability of choosing
response i, which could be less than 1 and so hi(t) is a defective
p.d.f.

The processes X1 and X2 in an independent race model can
be any stochastic process. However, from now on we confine
ourselves to the case where they are Wiener processes and so the
model is specified with the parameters (µ1, µ2, σ1, σ2) and the
two boundaries b1 and b2. Throughout this paper, we use the name
independent race model to refer to this restricted version of the
independent race models.3

3. Direct and inverse first passage time problems

Following Zhang et al. (2014), to investigate the relationship
between the Wiener process model and the independent race
models we will consider the corresponding inverse FPT problem.
In this section, we give a formal definition of the direct and the
inverse FPT problems.

Consider a Wiener process X with parameters (µ, σ ). Now
consider a function b : (0, ∞) → R satisfying b(0+) > 0
(that is, the limit of b(t) as t approaches zero from above is pos-
itive). The FPT of the process X through the boundary b(t) is T =

inf {t > 0|Xt ≥ b(t)}. Let f (t) denote the p.d.f. of the FPT, that is
f (t) =

d
dt Pr(T ≤ t). Regarding the relationship between the pro-

cess X , the boundary b(t) and the p.d.f. f (t), two problems can be
considered: the direct FPT problem and the inverse FPT problem.
Direct FPT problem. Given a process X with specific parameters
(µ, σ ) and the boundary b(t) for all time t , the problem is to deter-
mine the p.d.f. f (t). In otherwords, herewe seek the distribution of
the FPT of the process through the decision boundary. This problem
is familiar tomathematical psychologists. Several numericalmeth-
ods have been proposed for computing the p.d.f.s of the FPTs of a
givenWiener process with one or two boundaries (Brown, Ratcliff,
& Smith, 2006; Diederich & Busemeyer, 2003; Smith, 2000; Voss &
Voss, 2008). When the boundaries are constant (i.e., b(t) = b =

constant) the p.d.f.s can be expressed as analytic functions of the

2 It is important to note that


∞

0 fi(t)dt does not always equal 1. For example, for
a constant boundary b, this condition is true only if µ and b have the same sign (see
Karatzas & Shreve, 1991, Chapter 3, for a proof of this). However, as we will see (Eq.
(14)), in this paper wewill only encounter situations in which this condition is true.
3 Ratcliff, Hasegawa, Hasegawa, Smith, and Segraves (2007) called an indepen-

dent race model with Wiener process accumulators, a dual diffusion model.
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parameters (µ, σ , b) and time (see for example Ratcliff & Smith,
2004 Eqs. (A2a) and (A2b)).
Inverse FPT problem. Given the process X with specific parameters
(µ, σ ) and a given p.d.f. gd(t), determine the decision boundary
b(t) such that f (t) = gd(t). In other words, in this problem for a
given process we must compute a boundary b(t) such that the FPT
of the process through that boundary is equal to a desired density
gd(t). Since the density is given, the problem is called inverse
(Capocelli & Ricciardi, 1972; Cheng, Chen, Chadam, & Saunders,
2006; Zucca & Sacerdote, 2009). For a process with two decision
boundaries this problem is defined similarly.

There is little theoretical work on the inverse FPT problem.
Even in the literature of applied probability and statistics, most of
the papers published on this topic have focused on the numerical
computation of the boundary. One important theoretical question
in the inverse FPT problem is that for a given process, for what
forms of the desired p.d.f. gd(t), does there exist a decision
boundary b(t) such that f (t) = gd(t)? It is also important to know
if this boundary is unique. In the next section, we summarize some
of the previous theoretical results concerning these questions.

4. Related theoretical results

Capocelli and Ricciardi (1972) were among the first researchers
who studied the inverse FPT problem theoretically. They investi-
gated the conditions under which a given function can be consid-
ered as the p.d.f. of the FPT of a continuous, time-homogeneous
and one-dimensional Markov process through a constant bound-
ary.4 Specifically, they showed that for a given family of functions
f (b, t|x0), there exists at most one continuous, 1-dimensional and
time-homogeneousMarkov process such that f (b, t|x0) is the p.d.f.
of the FPT of that process through the boundary b for all values of
the parameter b in an interval of real numbers.

To the best of our knowledge, Cheng et al. (2006) were the first
to consider the question of the existence and uniqueness of the
solution of an inverse FPT problem. The proof of our theorem in
the next section is based on their results and so here we restate
the main theorem in their paper.

Theorem (Cheng et al., 2006). Consider a diffusion process defined
by the stochastic differential equation:

dX(t) = Ψ (X(t), t) · dt + Φ(X(t), t) · dB(t) (6)

where smooth and bounded functions Ψ : R × R+ → R and
Φ : R × R+ → R + (Φ(X, t) > ϵ > 0) are given. Also, consider a
given cumulative distribution function (CDF) F(t) = 1 − S(t) with:

lim
t→0

S(t) = S(0) = 1, S(t1) ≥ S(t2) ≥ 0 ∀t1 < t2. (7)

Then, there exists a unique function b(t) such that F(t) is the CDF of
the FPT of the process X(t) through the boundary b(t).

In other words, for any process specified by Eq. (6) with
the given parameters, and any given well-defined CDF F(t), the
corresponding inverse FPT problem is solvable and the solution is
unique.

Remark 1. For a given diffusion process and a given proper CDF,
this theory shows the existence and the uniqueness of a single
boundary that solves the inverse FPT problem. It is still an open
research question that whether the same results are true for
diffusion processes with two boundaries.

4 Such processes are specified by the SDE dX(t) = Ψ (X)dt + Φ(X)dB(t), where
Ψ : R → R and Φ : R → R are smooth bounded functions.
Remark 2. The Wiener process is a special case of Eq. (6) with
Ψ (X, t) = µ and Φ(X, t) = σ .

Remark 3. The solution b(t) is not necessarily continuous.

The importance of this theorem is readily obvious: it shows that
by choosing an appropriate decision boundary, the p.d.f. of the FPT
of a diffusion process can take any arbitrary form.

5. Mimicry of Wiener process model with symmetrical bound-
aries by independent race model

In this section, we first explain how the problem of mimicry
between two models can be translated into an inverse FPT
problem. Thismethodwas first proposedby Zhang et al. (2014).We
then prove a theorem regarding the mimicry between the Wiener
process model and the independent race model.

Consider a Wiener process model M1(µ, σ , a) with given
parameters (µ, σ ) and two given decision boundaries ±a. Also
suppose that X(0) = 0. In this model the boundaries are
symmetrical and the initial value of the accumulated information
is equidistant from the two decision boundaries. Let g1(t) and g2(t)
denote the p.d.f.s of the FPT of this process through the boundaries
a and−a, respectively.We are interested in the following question:
can an independent race model mimic this model? More precisely,
can we find an independent race model such that h1(t) = g1(t)
and h2(t) = g2(t) where hi(t) are defined in Eq. (5)? This question
can be cast as an inverse FPT problem as follows: consider an
independent race model with given parameters (µ1, µ2, σ1, σ2).
The inverse FPT problem is to investigate the existence of two
decision boundaries b1(t) and b2(t) such that the FPTs of thismodel
through these boundaries are h1(t) = g1(t) and h2(t) = g2(t). The
theorem below shows that for all values of (µ, σ , a) this inverse
FPT is solvable and so theWiener process model with symmetrical
boundaries can be mimicked by the independent race model.

Theorem. Consider a Wiener process with parameters (µ, σ ). Let
g1(t) and g2(t) denote the p.d.f. of the FPT of this process through the
boundaries a and−a, respectively, and let X(0) = 0. In addition, con-
sider an independent race model with parameters (µ1, µ2, σ1, σ2).
Then, (a) for all values of µ, µ1, µ2 and all σ , σ1, σ2 ≥ 0,
there exist two unique functions b1(t) and b2(t) such that h1(t) =

g1(t) and h2(t) = g2(t). (b) for all values of µ, σ ,µ1, µ2 and a, if
σ1 = σ2 = σ then we have limt→0 bi(t) = a.

In other words, for a givenWiener processmodel with arbitrary
parameters and constant symmetrical boundaries, and a given
independent race model with arbitrary values of the parameters,
it is always possible to choose the boundaries of the independent
racemodel in such away that it mimics theWiener process model.

Proof. We first take an approach similar to Townsend (1976) to
derive the relationship between the p.d.f.s of FPT of the Wiener
processmodel and themimicking independent racemodel. For the
independent race model to mimic the Wiener process model, the
following equations relating the p.d.f.s of the FPT must hold:

g1(t) = h1(t) H⇒ f1(t) =
g1(t)
S2(t)

, ∀t

g2(t) = h2(t) H⇒ f2(t) =
g2(t)
S1(t)

, ∀t.
(8)

If we can prove that the functions fi(t), i = 1, 2 obtained
from these equations arewell-defined, then Cheng et al.’s theorem,
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explained in the previous section, assures that there always exist
unique functions b1(t) and b2(t) such that the p.d.f. of the FPT of
the ith accumulator is fi(t).

In what follows, we prove that there always exist unique well-
defined p.d.f.s fi(t)with corresponding survivor functions Si(t) that
satisfy Eq. (8). Let v1(t) =

g1(t)
p and v2(t) =

g2(t)
1−p with p =

∞

0 g1(τ )dτ being the probability of choosing response i (note that
∞

0 g1(τ )dτ = 1 −


∞

0 g2(τ )dτ and


∞

0 vi(τ )dτ = 1). We have
p ·v1(t)+(1−p) ·v2(t) = g1(t)+g2(t) = f1(t) ·S2(t)+ f2(t) ·S1(t).
Taking the integral from t to ∞ of both sides of this equation we
have:

∞

t
[p · v1(τ ) + (1 − p) · v2(τ )]dτ

=


∞

t
[f1(τ ) · S2(τ ) + f2(τ ) · S1(τ )]dτ

=


∞

t


−

d
dτ


S1(τ ) · S2(τ )


dτ

= −S1(∞)S2(∞) + S1(t)S2(t). (9)

Now, assume that S1(∞) · S2(∞) = 0 or equivalently limt→∞

[Si(t)] = 0 for at least one of the accumulators.5 This results in the
following equation:

p · V 1(t) + (1 − p) · V 2(t) = S1(t) · S2(t) (10)

where V i(t) =


∞

t vi(τ )dτ . Now we divide both sides of Eq. (8) by
the two sides of Eq. (10) which yields:

f1(t)
S1(t)

=
g1(t)

p · V 1(t) + (1 − p) · V 2(t)
f2(t)
S2(t)

=
g2(t)

p · V 1(t) + (1 − p) · V 2(t)
.

(11)

Taking the integral from 0 to t of both sides of these equations
gives:

− ln[S1(t)] =

 t

0

g1(τ )

p · V 1(τ ) + (1 − p) · V 2(τ )
dτ

− ln[S2(t)] =

 t

0

g2(τ )

p · V 1(τ ) + (1 − p) · V 2(τ )
dτ .

(12)

The left hand side of these equations are obtained as follows: t
0

fi(τ )

Si(τ )dτ = − ln[Si(t)] + ln[Si(0)]. Another necessary condition
for well-defined Si(t) is that Si(0) = 1 which results in the left
hand side of Eq. (12).

Now we note that for a Wiener process if X(0) is equidistant
from its two decision boundaries then g1(t)

g2(t)
=

p
1−p for all t . In this

case v1(t) = v2(t) = v(t). Substituting this in the right hand side
of Eqs. (12) yields:

− ln[S1(t)] =

 t

0

g1(τ )

V (τ )
dτ =

 t

0

p · v(τ)

V (τ )
dτ

= −p · ln[V (t)]

− ln[S2(t)] =

 t

0

g2(τ )

V (τ )
dτ =

 t

0

(1 − p) · v(τ)

V (τ )
dτ

= −(1 − p) · ln[V (t)]

(13)

5 This condition implies that in the race model, in all trials at least one of the
accumulators reaches its decision threshold and so the FPT in all trials is finite. In
the proof, we show that even with this restriction the race model can mimic the
Wiener process model with symmetrical boundaries.
and so:

S1(t) = [V (t)]p

S2(t) = [V (t)](1−p).
(14)

It is easy to see that limt→∞ Si(t) = 0, Si(0) = 1 and Si(t) are
differentiable and decreasing and so they arewell-defined survivor
functions. Therefore, if there exist the decision boundaries bi(t)
such that the survivor functions of the randomvariables Ti (defined
in Eq. (3)) are equal to those given by Eq. (14), then the given
independent race model will mimic the given Wiener process
model. Since the survivor functions given in Eq. (14) are well-
defined, Cheng et al.’s theorem assures that for any given values
of the parameters (µ, σ , a, µ1, µ2, σ1, σ2) such boundaries exist
and they are unique and this completes the proof.

The proof of part (b) is presented in the Appendix. �

Remark 1. This theorem shows that the independent race model
can mimic a Wiener process model with symmetrical boundaries.
However, it is very important to note that themimicry power of the
independent race model is much more than this. Specifically, any
pair g1(t) and g2(t) that result in well-defined survivor functions
Si(t) in Eq. (12), can be mimicked by an independent race model.
In the proof, we showed that this is the case when g1(t) and g2(t)
are the p.d.fs of FPT of a Wiener process.

Remark 2. In the Theorem above we assumed that the accumu-
lators of the independent race model are Wiener processes. How-
ever, since Cheng et al.’s theorem is true for all continuous Markov
processes specified by Eq. (6) (and not only theWiener processes),
the proof above is true for any independent race model with any
such processes as the accumulators.

Remark 3. Conditions similar to what we derived in Eq. (12) were
first derived by Townsend (1976) in the context of the mimicry
between serial andparallelmodels. He also proposed two sufficient
conditions on g1(t) and g2(t) that assure limt→∞ Si(t) = 0
(Theorem 2, parts B and C in that paper).

6. Computing time-varying boundaries

Now that we have proved that for a given race model we
can always determine its boundaries such that it mimics a given
Wiener process model, the next question is how to compute these
boundaries. Given the results in the previous section, we can
summarize this problem as follows:

Consider a given Wiener process model with the p.d.f.s of the FPT
g1(t) and g2(t), and an independent race model with parameters
(µ1, µ2, σ1, σ2). Compute two functions b1(t) and b2(t) such that the
p.d.f. of the FPT of the process:

• X1 with parameters (µ1, σ1) through the boundary b1(t) is f1(t) =

p · v(t) · [V (t)](p−1)

• X2 with parameters (µ2, σ2) through the boundary b2(t) is f2(t) =

(1 − p) · v(t) · [V (t)](−p).

Therefore, this problem consists of two separate (1-dimen-
sional) inverse FPT problems. Several numerical methods have
been proposed for solving this type of inverse FPT problem
(Abundo, 2006, 2013; Song & Zipkin, 2011; Zucca & Sacerdote,
2009). We employ an approach similar to that proposed by
Zucca and Sacerdote (2009). Here, we explain the algorithm for
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Algorithm 1 Compute the boundaries of an independent race
model to mimic a Wiener process model

The parameters µ, σ ,µ1, σ1, µ2, σ2 are given
Compute g1(t) and g2(t) using eq. (A2a) and (A2b) in Ratcliff and
Smith (2004)
f1(t) = p · v(t) · [V (t)](p−1) and f2(t) = (1− p) · v(t) · [V (t)](−p)

for k=1 to N do
solve equations 15 for b1(k∆t)

end for

computing b1(t). The basic idea is to solve, at each time step k, the
so-called discretized Volterra integral equation for b1(k∆t):

f1(k∆t) = −2Ψ [b1(k∆t)|0, 0] + 2∆t

k−1
j=1

f1(j∆t)

× Ψ [b1(k∆t)|b1(j∆t), j∆t ]

Ψ

b1(k∆t)|y, j∆t , k, b1((k − 1)∆t)


=

0.5
2πσ 2(k − j)∆t

× exp

−

(b1(k∆t) − y − µ1(k − j)∆t)
2

2σ 2(k − j)∆t


×


b1(k∆t) − b1((k − 1)∆t)

∆t

− µ1 −
b1(k∆t) − y − µ1(k − j)∆t

(k − j)∆t


.

(15)

Note that in this set of nonlinear equations, the only unknown
variable at each time step k is b1(k∆t). To solve for b at each
time step, we discretize a plausible range of values for b and find
the value that minimizes the difference between the two sides of
Eq. (15). Algorithm 1 shows the pseudo-code for computing the
boundaries.

It is worth noting that the functions f (.) and Ψ (.) in Eq. (15)
are exactly the same as those used in the direct FPT problem to
compute the p.d.f. of the FPT of a Wiener process with parameters
(µ, σ ) through the time-varying boundary b1(t) (see Smith, 2000
for a comprehensive review of the methods for solving the direct
FPT problem). Themain difference is that in the direct FPT problem,
the boundary b1(t) is known and the equations are solved for the
p.d.f. f1(t)while in the inverse FPT problem, f1(t) is known and the
equations are solved for the unknown boundary b1(t).

Fig. 2 shows the results of applying this algorithm to compute
the boundaries. The parameters of theWiener process model used
to generate this figure areµ = 0.1, σ = 0.1. The boundaries of the
Wiener process model are set at±0.09. To generate this figure, we
first computed the p.d.f.s of the FPTs of theWiener process through
the given boundaries (g1(t) and g2(t)) using Eqs. (A2a) and (A2b)
in Ratcliff and Smith (2004). The top row shows the results for an
independent race model with parameters µ1 = −µ2 = 0.1, σ1 =

σ2 = 0.1. The left panel shows the estimated boundaries and the
right panel shows the p.d.f.s of the FPTs predicted by the Wiener
process model and the independent race model. It can be seen that
the independent racemodelmimics theWiener processmodel. It is
shown that the boundaries b1(t) and b2(t) are decreasing functions
of time and also b1(0) = b2(0) = 0.09. To solve Eq. (15), based on
part (b) of the theorem, we set b1(0) = b2(0) = a and then solve
for bi(k∆t) for all k = 1, 2, . . . . This shows the importance of this
part of the theorem.

The bottom panel of this figure shows the results for an
independent race model with parametersµ1 = 0.1, µ2 = 0, σ1 =

σ2 = 0.1. It can be observed that the shape of the boundaries
is different from the top panel. As the right panel indicates, this
model also mimics the Wiener process model perfectly.
As it can be seen in the left panels of Fig. 2, the mimicking
boundaries for the correct and incorrect responses are different
(the red and the black curves). For example, consider the
independent race model used in the top panel of the figure. In this
model, if the stimulus 1 (2) is presented in a trial the drift rate in
accumulator 1 (2) is 0.1 while the drift rate in accumulator 2 (1)
will be 0. In computing the boundaries, we assume that b1(t) is the
boundary for the accumulator with drift rate equal to 0.1 and b2(t)
is the boundary for the accumulatorwith drift rate equal to 0. Since
the drift rates in the accumulator corresponding to the correct and
incorrect responses in each trial are 0.1 and 0, respectively, b1(t)
corresponds to the correct responses while b2(t) corresponds to
the incorrect responses.

Having different decision boundaries for correct and incorrect
responses is not a desirable property of a model. This property
implies that before the trial starts, the subject should know the
correct response and set its corresponding decision threshold
to b1(t) and the decision threshold of the incorrect response
accumulator to b2(t). But of course the subject does not know
the correct response a priori and so this property is not plausible.
Therefore, it is desirable to come up with a mimicking model in
which the decision boundaries are symmetric. The remaining part
of this section is devoted to developing a racemodel that canmimic
aWiener process model and has symmetric boundaries for correct
and incorrect responses.

In the mimicking independent race model, the drift coefficients
are constantwhile the boundaries are time-varying. To develop the
model with boundaries which are not affected by the value of the
drift rates, we use a simple technique: we take the time-variance
in the boundaries out and put it in the drift coefficients. Consider,
for example, the accumulator 1 in the mimicking model in the top
panel of Fig. 2. The drift coefficient in this accumulator is µ1 = 0.1
and its decision boundary is the function b1(t) shown in the left-
top panel. First, we decompose b1(t) into a constant and a time-
varying part, that is b1(t) = c0 + β1(t) where c0 is a constant
and β1(t) = b1(t) − c0. Let T1 denote the FPT of the process X1
(accumulator 1) through the boundary b1(t) and let F1(t) denote
the CDF of this random variable. We have:

F1(t) = Pr

T1 ≤ t


= Pr


X1(τ ) ≥ b1(τ ); τ ∈ (0, t]


= Pr


X1(τ ) − β1(τ ) ≥ c0; τ ∈ (0, t]


. (16)

It can be shown that (Smith, 2000, equation 17):

X1(t) =

 t

0
µ1dτ + σB(t) (17)

where B(t) is the Brownian motion process. Substituting for X1
from Eq. (17) into Eq. (16) yields:

F1(t) = Pr
 τ

0
µ1dν + σB(τ ) − β1(τ ) ≥ c0; τ ∈ (0, t]


= Pr

 τ

0
(µ1 − β ′

1(ν))dν − β1(0)

+ σB(τ ) ≥ c0; τ ∈ (0, t]


(18)

where β ′

1(t) =
d
dt β1(t) (we assume that this derivative exists).

If we set c0 = b1(0) then β1(0) = 0 which yields F1(t) =

Pr
 τ

0 (µ1 − β ′

1(ν))dν + σB(τ ) ≥ c0; τ ∈ (0, t]

. The process

Y1(τ ) =
 τ

0 (µ1 − β ′

1(ν))dν + σB(τ ) is a time-inhomogeneous
Wiener process with time-varying drift coefficient µ1 − β ′

1(t) and
constant diffusion coefficientσ . Eq. (18) shows that F1(t) is the CDF
of the FPT of this process through the constant boundary c0.

In sum, these results show that the CDF (and so the p.d.f.) of
the FPT of a Wiener process with parameters (µ1, σ ) through the
boundary c0 + β1(t) is equal to that of a Wiener process with the
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Fig. 2. The results of applying Algorithm 1 to compute the boundaries of the independent race model. Left: the computed boundaries. Right: the p.d.f. of the FPTs of the two
responses predicted by the Wiener process model (g1(t) and g2(t)) and the independent race model (h1(t) and h2(t)). The parameters of the Wiener process model used
are: µ = 0.1, σ = 0.1, a = 0.09. The parameters of the independent race model in the top row are µ1 = −µ2 = 0.1, σ1 = σ2 = 0.1 and in the bottom row the parameters
are µ1 = 0.1, µ2 = 0, σ1 = σ2 = 0.1.
drift coefficient µ1 − β ′

1(t) and the diffusion coefficient σ through
the constant boundary c0 (see Smith, 1995, 2000 for a thorough
discussion). Similar results can be derived for the accumulator 2.
For the independent race model used in the top panel of Fig. 2, the
drift coefficient of accumulator 2 is 0. We can show that the CDF
of this Wiener process through the boundary b2(t) = c0 + β2(t) is
equal to that of a Wiener process with the drift coefficient −β ′

2(t)
and diffusion coefficient σ through the constant boundary c0.6

This shows that an independent race model with parameters
(µ1, µ2, σ ) and decision boundaries b1(t) and b2(t) is equivalent
to an independent racemodelwith drift coefficientsµ1−β ′

1(t) and
µ2−β ′

2(t), diffusion coefficients σ , and the decision boundaries c0.
This model is depicted in the middle panel of Fig. 3.

Although the decision boundaries are symmetric in this model,
it assumes that the drift rates in the two accumulators are two
different time-varying functions. Wemust specify the relationship
between these functions and the physical properties of the
stimulus. In the Wiener process model, it is assumed that the drift
coefficient is proportional to the discriminability of the stimulus. In
the independent race model used in the bottom panel of Fig. 2, the
drift coefficient of the accumulator corresponding to the presented
stimulus is proportional to the discriminability while the drift
coefficient of the other accumulator is zero. In the top panel of
Fig. 3, this is shown by sending the values µ1 and 0 to the two
accumulators, respectively. To specify the relationship between
the discriminability of the stimulus and the time-varying drift
coefficients in themimicking racemodel with constant boundaries
(the middle panel of Fig. 3), we propose the architecture shown in
the bottom panel of Fig. 3. The part of the model which is inside
the gray box is exactly the same as the model in the middle panel
of the figure. However, the values µ1 and 0 are multiplied by two
dynamic gains K1(t) and K2(t) and then summed before the noise

6 Note that since b1(0) = b2(0) = a, if we set c0 = a then β1(0) = β2(0) = 0.
is added. In this model we have:

µ1 · K1(t) + 0 · K2(t) = µ1 − β ′

1(t)

0 · K1(t) + µ1 · K2(t) = −β ′

2(t)
(19)

solving this equations yields:

K1(t) = 1 −
β ′

1(t)
µ1

K2(t) = −
β ′

2(t)
µ1

.

(20)

Although K1(t) ≠ K2(t), this model is symmetric because
both accumulators have the same gains and the same decision
thresholds. Another important point is that the two accumulators
interact in this model. However, all the interaction happens before
the noise is added and so the stochastic part of the accumulated
information remains independent.

Based on the results obtained in this section, we can state the
theorem proved in Section 5 for the model shown in the bottom
panel of Fig. 3: consider a Wiener process model with parameters
(µ, σ ) and the decision boundaries ±a. For all values of µ, a and
all σ ≥ 0, if we set c0 = a and µ1 = µ, there exist two unique
functions K1(t) and K2(t) such that themodel shown in the bottom
panel of Fig. 3 mimics the Wiener process model.

In most of the perceptual decisionmaking experiments, stimuli
with several levels of discriminability are intermixed and in each
trial one discriminability level is randomly picked and presented.
When fitting sequential sampling models to data from these
experiments, it is usually assumed that the subject adopts one
set of decision thresholds for all discriminability levels. However,
the drift coefficient is different for different discriminability levels
(Palmer, Huk, & Shadlen, 2005; Ratcliff, 1978; Ratcliff & Smith,
2004; Ratcliff et al., 1999). Therefore, it is interesting to investigate
in themimicking race model how the gains K1(t) and K2(t) change
when in the Wiener process model the decision boundary a is
kept fixed and the drift coefficient µ changes. The results of such
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Fig. 3. Three equivalent race models. Top: an independent race model with
constant drift coefficients and time-varying boundaries. Middle: an independent
racemodelwith constant symmetric boundaries and time-varying drift coefficients.
Bottom: an interactive racemodelwith constant symmetric boundaries. See the text
for more details.

analysis is shown in Fig. 4. In this figure, we have considered a
Wiener process model with σ = 0.1, a = 0.09 and several
values of µ shown in the figure. Then, for each value of µ we have
computed the functionsK1(t) andK2(t) such that themodel shown
in the bottom panel of Fig. 3 with µ1 = µ, σ1 = σ2 = 0.1 and
c0 = a = 0.09 mimics the Wiener process model. As seen, the
gains depend not only on time but also on the value of µ.

7. Relation to general independent race models

In the independent race model considered in this paper, each
accumulator is modeled as a Wiener process and the decision
boundaries are deterministic. This model falls into a more general
class of independent race models which, for the sake of clarifica-
tion, we call general independent race models. Previous research
has investigated the properties of the p.d.f.s of reaction times that
can be produced by thesemodels (Jones &Dzhafarov, 2014;Marley
& Colonius, 1992; Townsend, 1976). For completeness, we first de-
fine this class of models and then state the most pertinent results
on their properties to the results presented in this paper and finally
explain how they are related. Here, we only present the definition
and results for the case in which there are only two possible re-
sponses, one condition and one stimulus value in the experiment.

Definition (General Independent Race Model). In a general race
model, each response i, i = 1, 2, is associated with an information
processing channelwhich is specified by a stochastic processes Ri(t)
and a threshold, θi, which is a random variable. The FPT in each
channel without considering other channels is Ti = inf{t >
0|Ri(t) ≥ θi}. If the random variables Ti are independent, then the
model is a general independent race model.

The reaction time in each trial isT = min{Ti}. We denote the
p.d.f. of giving the response i at time t by hi(t) and its CDF by
Hi(t) = Pr[T ≤ t, i]. The following theorem specifies the family
of reaction time distributions that can be produced by this class of
models.

Theorem (Jones & Dzhafarov, 2014). Let g1(t) and g2(t) be two
p.d.f.s of reaction time, G(t) =

 t
0 (g1(τ ) + g2(τ ))dτ be the CDF of

the marginal reaction time and λi(t) =
gi(t)

1−G(t) be the hazard function
of the ith response. Let M =


(R1(t), θ1), (R2(t), θ2)


be a general

independent race model. If λi(t) = 0 for t > tmax then M is a
general independent race representation of g1(t) and g1(t) (that is
hi(t) = gi(t), i = 1, 2) if and only if:

Pr[Ti ≤ t] = 1 − exp


−

 t

0

gi(τ )

1 − G(τ )dτ


(21)

for all t < tmax. Eq. (21) provides the necessary and sufficient
condition for the set of distributions that can be produced by the
general independent race models.7

There is an important difference between the results we
obtained in Section 5 and this theorem: in Jones and Dzhafarov’s
theorem, there are no constraints on the processes Ri(t). For any
given pair of g1(t) and g2(t), the processes Ri(t) and the thresholds
θi should be chosen such that Eq. (21) is satisfied. In contrast, in
the theorem of Section 5, we restricted the processes Ri(t) to be
Wiener.

A more restricted version of the general independent race
model is the Grice framework with independent thresholds in
which Ri(t) are not stochastic processes but deterministic func-
tions (Dzhafarov, 1993; Jones & Dzhafarov, 2014) and the thresh-
olds θi are independent random variables. Dzhafarov (1993)
showed that for any joint distribution on the decision thresh-
olds, there exist deterministic functions Ri(t) such that M =
(R1(t), θ1), (R1(t), θ1)


is a Grice representation of two given dis-

tributions g1(t) and g2(t). Another restricted version of the gen-
eral independent race model is the ballistic accumulator model
(Brown&Heathcote, 2005; Jones&Dzhafarov, 2014). In thismodel,
Ri(t) = kiLi(t) (or Ri(t) = ki + Li(t)) where ki’s are random vari-
ables and Li(t)’s are deterministic functions. Also θi’s, are determin-
istic and all have the same value, say b. Jones and Dzhafarov (2014)
proved that under some technical assumptions, for any given g1(t)
and g2(t) and functions Li(t), there exist random variables ki such
thatM =


(k1L1(t), b), (k2L2(t), b)


is an independent race repre-

sentation of g1(t) and g2(t). The main difference between our re-
sults and these theorems is that in all these models Ri’s are either
deterministic or random variables and not stochastic processes. In
contrast, the accumulators are Wiener processes in the indepen-
dent race model we considered. Due to this distinction, in order to
prove our theorywehad to show that there exists a unique solution
to the corresponding inverse FPT problem. In general, if we assume
that Ri(t)’s are specific stochastic processes, to show that Eq. (21)
is satisfied for given distributions g1(t) and g2(t), one should solve
the corresponding inverse FPT problem. This is what we did in the

7 It is important to note that this equation is equivalent to Eq. (12) and the
constraint S1(∞)S2(∞) = 0 should also be satisfied here. As we mentioned in
Section 5, this type of conditions were first developed by Townsend (1976). In
our proof, we followed the steps in Townsend (1976) because this proof makes
the necessity of the constraint clearer. It also shows the connection between our
theorem and the problem of mimicry between serial and parallel models.
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Fig. 4. Time-varying gains K1(t) (left) and K2(t) (right) for different values of µ. To compute these gains, for each value of µ we set µ1 = µ in the model shown in the
bottom panel of Fig. 3. We also set c0 = a and σ1 = σ2 = σ and then compute the gains such that model mimics a Wiener process model with parameters (µ, σ , a). The
parameters used are: µ = 0.1, σ = 0.1, a = 0.09.
proof of the theorem in Section 5. As we explained before, how-
ever, the inverse FPT problem has not been solved except for a few
cases (Abundo, 2013; Cheng et al., 2006).

Another point is that in the general independent race model
and its more restricted variants, the thresholds are assumed to be
constant. We showed, however, that if we restrict the processes
Ri(t) to be Wiener, the resulting boundaries will be time-varying
(see the model in the top panel of Fig. 3).

8. Mimicking the full diffusion model

It can be shown that for all values of µ, σ and a the mean
reaction times for the two responses in the Wiener process are
the same. However, numerous experimental data show otherwise
(Ratcliff, 1978; Ratcliff & Smith, 2004; Ratcliff et al., 1999; Usher &
McClelland, 2001). Particularly, in some experimental conditions
the mean reaction time for the correct responses is faster than
the incorrect responses while in other conditions the opposite
pattern has been observed. Ratcliff and his colleagues (Ratcliff,
1978; Ratcliff & Rouder, 1998; Ratcliff et al., 1999) extended
the Wiener processes to a model which is able to predict these
patterns. In this model, the drift coefficient and the starting value
of the accumulated information are considered to be Gaussian and
uniform random variables, respectively. The variability in the drift
coefficient results in slower incorrect mean reaction time while
variability in the starting value results in faster incorrect mean
reaction time. Extensive research has shown that this model fits
very well to the data from reaction time tasks. To distinguish this
model from the Wiener process model we call it the full diffusion
model. This model has some other parameters but we do not
consider them here.

Our aim here is to use the Algorithm 1 to compute the bound-
aries of an independent racemodel tomimic a full diffusionmodel.
We confine our analysis to the case where the drift coefficient is
distributed as a Gaussian N(µ, σ 2

µ) and there is no variability in
the starting value.8

Algorithm 1 can be used to compute themimicking boundaries.
Fig. 5 shows the results of mimicry of a full diffusion model by
an independent race model. The top panel of the figure shows the
mimicking boundaries and the p.d.f. of the responses. The bottom
panel shows the gains Ki(t) in the model in the bottom panel of
Fig. 3 for different values of σµ. As it can be seen, the gains change
dramatically when this parameter varies.

8 It is important to note that since when σµ > 0 then g1(t)
g2(t) ≠

p
1−p , the proof

presented in Section 5 is not valid anymore.
9. Mimicking Wiener process model by Ornstein–Uhlenbeck
process model

In this section, we consider the problem of mimicking a given
Wiener process model by an Ornstein–Uhlenbeck (OU) process
model. The OU process model has been used extensively in mod-
eling different decisionmaking problems (Busemeyer & Diederich,
2002; Busemeyer & Townsend, 1993). This process is a continu-
ous Markov process and so is a special case of Eq. (6). Specifically,
this process is specified by setting Ψ (X(t), t) = µ − γ · X and
Φ(X, t) = σ where γ > 0 is called the decay rate.

Unfortunately, unlike the case of the independent race model,
we have not been able to prove the existence and uniqueness
of the decision boundaries for an OU process with given drift,
diffusion, and decay parameters to mimic a given Wiener process
model. However, our extensive simulations with many different
parameter values provide strong evidence for such mimicry of the
Wiener process model by the OU process model. We state these
results in the form of a conjecture.

Conjecture. Consider a Wiener process X with parameters (µ, σ )
and two constant boundaries ±a. Also, consider an OU process Xγ

with parameters (µ, σ , γ ). Then, for all given values of µ, σ > 0
and γ > 0, there exist two unique functions b1(t) and b2(t) such that
the p.d.f.s of the FPT of the process Xγ through the boundaries b1(t)
and b2(t) are equal to the p.d.f.s of the FPT of the process X through
the boundaries ±a.

Algorithm1 can be easily extended to the case of computing the
mimicking boundaries of an OU processes. Fig. 6 shows the results
of such algorithm to compute the boundaries of the OU process. It
is hard to see in the figure, but the resulting boundaries are slightly
asymmetric. Intuitively thismakes sense because, aswe explained,
themean reaction times for the correct and incorrect responses are
equal in aWiener process model while this is not the case in an OU
process. Hence, to be able to mimic the Wiener process model the
boundaries of the OU process should be asymmetric. In contrast
to the race model, it is not possible to come up with a symmetric
mimicking OU model. Also, it is important to note that the shape
and asymmetry of the boundaries depend on the value of the drift
coefficient µ. Therefore, similar to the situation we showed in
Fig. 4, to mimic a Wiener process model of an experiment with
several levels of the stimulus discriminability, we should compute
different mimicking boundaries for each value of µ.

As seen in the figure, even for large values of γ , the resulting OU
process model mimics the Wiener process model with the given
parameters. The resulting boundaries are decreasing and b1(0) =

−b2(0) = 0.9. For larger values of γ the boundaries converge to
values closer to zero.
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Fig. 5. Mimicking a full diffusion model with an independent race model. Top left: the mimicking boundaries. Top right: the p.d.f. of the reaction times predicted by the
full diffusion model and the independent race model. Bottom: The corresponding gains K1(t) (left) and K2(t) (right) in the model in the bottom panel of Fig. 3 for different
values of σµ . Other parameters are: µ = 0.1, σ = σ1 = σ2 = 0.1, a = 0.09.
10. Discussion

The main contribution of this paper was to investigate the
mimicry between several sequential sampling models, both the-
oretically and numerically. By casting the problem of mimicry as
an inverse FPT problem, wewere able to prove that a givenWiener
process model with symmetrical boundaries can always be mim-
icked by a given independent race model with appropriate deci-
sion boundaries. We showed how these boundaries can be com-
puted. The numerical computation of the boundaries showed that
the mimicking boundaries are time-varying and asymmetric. We
then proposed a symmetric mimicking race model in which the
decision boundaries are constant but the stimulus discriminability
is multiplied by time-varying gains.

Race models with time-varying gains have been proposed
previously (Cisek, Puskas, & El-Murr, 2009; Ditterich, 2006). In
these models, the gains are parametric functions of time and the
parameters are estimated by fitting the models to the data. In the
mimicking race model we proposed, the gains are obtained by
solving the corresponding Volterra integral equation and do not
take a parametric form. However, it would be interesting to see
if we can approximate the gains with parametric functions. In that
case, the resultingmodel will notmimic theWiener processmodel
exactly and we should assess the discrepancy between the two
models for different values of the parameters. Another important
difference between the model in the lower panel of Fig. 3 and the
models in Cisek et al. (2009) and Ditterich (2006) is that in our
model the gains are multiplied before the noise is added to the
signals. In other words, the interaction in our model happens in
the physical stimulus and the stochastic parts of the model remain
independent.
Recently, Jones and Dzhafarov (2014) showed that the race
model is universal in the sense that if we do not restrict the ac-
cumulators to have a specific form, the race model can generate
any form of the distributions of reaction time. The important dif-
ference between our results with their results is that in the inde-
pendent race model we considered in this paper the accumula-
tors are restricted to the Wiener processes. This restriction is im-
portant, because this version of the race model is consistent with
the neuro-physiological findings which show that the activation of
some neuron populations during perceptual decision making re-
sembles a form of stochastic accumulation (Gold & Shadlen, 2002,
2007; Roitman & Shadlen, 2002).

The theoremweproved andRemark 2 in Section 5 show that the
independent race model with Wiener process accumulators is still
universal. Jones and Dzhafarov (2014) used the universality results
to argue that the racemodelswith no restrictions are not falsifiable.
These results show that by relaxing the assumption of constant
decision boundaries, models like the independent race model and
the OU model can be good competitors to the Wiener process
models. This motivates the development of more sophisticated
experimental designs that can distinguish between these models
(Khodadadi, Fakhari, & Busemeyer, 2014; Teodorescu & Usher,
2013; Tsetsos et al., 2012).

As we mentioned in the Introduction, another approach for
comparing sequential sampling models is to fit these models to
empirical data and compare them using some statistical measures
of goodness of fit. For example, in their seminal work, Ratcliff
and Smith (2004) fitted several sequential sampling models to
the same data sets and compared the goodness of fit of each
model to each data set (see also Smith & Ratcliff, 2009 for a
similar comparison between a version of the Wiener process
model with time-varying drift and diffusion coefficients and a
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Fig. 6. The results of applying an algorithm analogous to Algorithm 1 to compute the boundaries of an OU process with different values of γ . Left: the computed boundaries.
Right: the p.d.f. of the FPTs of the two responses predicted by the Wiener process model (g1(t) and g2(t)) and the OU process model (h1(t) and h2(t)). The parameters used
are: µ = 0.1, σ = 0.1, a = 0.09.
version of the independent race model with the OU process
accumulators). One of their findings pertinent to our results is that
for small to moderate values of the decay rate γ , the predictions
of the OU process model and the Wiener process model (both
with constant boundaries) are indistinguishable. In other words,
although the twomodels do notmimic each other exactly, they are
empirically indistinguishable. Their results showed that for large
values of the decay rate parameter, however, the two models are
distinguishable and the predictions of the OU process model are
not consistent with the data. Our numerical example in Section 9
(Fig. 6) shows that for larger values of γ , the difference between
the initial and the asymptotic values of the mimicking boundaries
is larger and so their approximation with time-constant decision
boundaries will not be accurate.

As it can be seen in Fig. 4, the gains K1(t) and K2(t) have rather
complicated forms. The self-excitation term K1(t) increases first
then decreases while the cross-excitation term K2(t) increases.
Similar complicated patterns have been observed in Jones and
Dzhafarov (2014) (see for example Fig. 5 in that paper) and Zhang
et al. (2014) (see for example Fig. 3 in that paper). This raises the
question of whether these mimicking models are psychologically
and/or neurophysiologically plausible. We are not aware of any
behavioral or neural evidence supporting the plausibility of such
complicated patterns. However, it should be noted that these
patterns arise when we try to build models that perfectly mimic
a Wiener process model. But there is no reason to believe that the
Wiener process model is the best model for perceptual decision
making tasks. We may find simpler and more plausible forms
for the gains K1(t) and K2(t) such that the resulting model
approximatelymimics aWiener process model and fits reasonably
to the data. For example the gains could be considered as the
output of a set of linear filters (see for example Smith, 1995). Our
results show that a race model can become arbitrarily similar to a
Wiener process model. Further research is necessary to see if there
is a plausible approximation of the mimicking race model that can
fit the data well.

Appendix

In this appendix, we prove that for any values of the parameters
(µ, σ , a, µ1, µ2) in the theorem proved in Section 5 if σ1 = σ2 =

σ then limt→0 bi(t) = a. We show that the proof for i = 1 and the
proof for i = 2 will be similar.

First we note that as ∆t goes to zero the first order
approximation of V is V (∆t) ≈ 1−∆t ·v(∆t). Since f1(t) = p·v(t)·
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[V (t)](p−1), as∆t goes to zerowehave f1(∆t) ≈ p·v(∆t) = g1(∆t).
On the other hand we have:

f1(∆t) = −2Ψ [b1(∆t)|0, 0]

=
−1

2πσ 2∆t

exp


−
(b1(∆t) − µ1∆t)

2

2σ 2∆t


×


b1′(∆t) − µ1 −

b1(∆t) − µ1∆t

∆t


(A.1)

and:

g1(∆t) = −2Ψ [a|0, 0]

=
−1

2πσ 2∆t

exp


−
(a − µ∆t)

2

2σ 2∆t


×


−µ −

a − µ∆t

∆t


. (A.2)

Eq. (A.1) is obtained from the Volterra integral equation of a
Wiener process with boundary b1(t) (Eqs. 27, 47 and 57 in Smith,
2000). Similarly, Eq. (A.2) is obtained from the Volterra integral
equation of aWiener processwith boundaries±a. Setting f1(∆t) =

g1(∆t) and ignoring the termsµ·∆t in Eqs. (A.1) and (A.2) (because
∆t → 0) yields:

exp


−
b21(∆t)

2σ 2∆t


×


b1′(∆t) −

b1(∆t)

∆t


= exp


−

a2

2σ 2∆t


×


−

a
∆t


. (A.3)

Taking the logarithm from both sides of this equation yields:

b21(∆t) = a2 + log

b1(∆t)

a
−

b1′(∆t)

a
∆t


· 2σ 2∆t . (A.4)

The second term in the right hand side of this equation goes zero
when ∆t → 0 and so lim∆t→0 b21(∆t) = a2. Since the argument of
the log function should be positive we should have b1

a > 0 and so
lim∆t→0 b1(∆t) = a. This completes the proof. �
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